
IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

Solving Rubik’s Cube using Branch & Bound

Algorithm

Ignatius David Partogi - 13518014

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): ignatiusdavidpartogi@gmail.com

Abstract—Rubik’s Cube is a popular puzzle game where the

player must solve a 3x3x3 cube by rotating the sides of the cube to

change its state. Rubik’s Cube can be useful to train the player’s

brain. This paper provides a way to solve a Rubik’s Cube using

Branch & Bound algorithm. It also explains how the algorithm

works and the testing of the program using different test cases.

Keywords—Rubik’s Cube, Puzzle Game, Rotation, State, Train,

Branch & Bound, Algorithm.

I. INTRODUCTION

Rubik’s Cube is one of the most popular puzzle games in the
world. The puzzle game is called Rubik’s Cube because it was
invented by Ernõ Rubik, a Hungarian sculptor and professor of
architecture, in 1974. It was originally called the Magic Cube.
The invention quickly rose in popularity and became the world’s
best-selling toy. Rubik’s Cube became a fun and brain-
stimulating puzzle game, but also a target for some enthusiasts
looking to find algorithms to solve it. Since its popularity,
variations of Rubik’s Cube start to emerge, from 2x2x2 cube to
non-cubical designs. Rubik’s Cube was inspired by China’s Luo
Book.[1]

Rubik’s Cube is a 3D combination puzzle game. It consists
of a 3x3x3 cube configuration formed by 26 cubes (called
cubelets). Rubik’s Cube has approximately
43,252,003,274,489,856,000 (43 quintillion) possible states.

 The amount of possible states a Rubik’s Cube has means
solving the cube requires a lot of computing power and RAM.
To solve this problem, algorithms are implemented into the
solving program to reduce both the computing power
requirement and execution time. One of the algorithms that can

be implemented into a Rubik’s Cube solving program is Branch
& Bound algorithm.

II. THEORIES

This section discusses about the theories and explanations

of some terms used in this paper. Terms used in this paper that

will be explained in this section consist of Branch & Bound,

Graph, Tree, and Rooted Tree.

A. Breadth First Search (BFS)

BFS is one of the two basic uninformed search algorithms
called graph traversal algorithm, alongside Depth First Search
(DFS). BFS and DFS are done with an assumption that all nodes
are connected.

 BFS works as a simple Brute Force-like search algorithms.
The way BFS works is as follows: First, determine an initial
point of traversal by choosing a node. Check the initial node. If
it does not match the desired search result, visit and check all
unchecked neighboring nodes of the node first, then check all
the unchecked neighboring nodes of each neighboring node of
the initial node. This process is repeated until a node matches the
search result desired. BFS works in a similar way to a queue,
with First In First Out (FIFO) method.

 Figure 2 is an illustration of how BFS algorithm works. First,
we determine the initial node, numbered by 1. After searching
node 1, we look at all unchecked neighboring nodes of node 1,
numbered by 2 and 3. Then, after searching nodes 2 and 3, look
at all neighboring nodes of node 2, numbered by 4 and 5, and
search them first. Next, search all the neighboring nodes of node
3, numbered by 6 and 7. Subsequently, search all the unchecked
neighbors of node 4, numbered by 8. The search ends with the
termination trigger being no nodes fit the desired search result
because there are no unchecked nodes left in the graph.

B. Branch & Bound

Branch & Bound is an algorithm that is used for optimization
problems. Branch & Bound is used to minimize or maximize an
objective function without violating the problem’s constraints.
How Branch & Bound works is the same as Breadth First Search
(BFS), but with the addition of least cost search. Each node in a

Figure 1. Rubik’s Cube (source: https://ruwix.com)

IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

set is given a specified cost based on the context of the problem
and at the end of each iteration, after the child nodes have been
generated, the set is arranged based on the cost in ascending
order.

Using Branch & Bound algorithm to solve Rubik’s Cube
problem is similar to using it to solve 15-puzzle problem. In this
case, the total cost consists of two different types of costs,
displayed by this equation:

 𝑐(𝑖) = 𝑓(𝑖) + 𝑔(𝑖) (1)

𝑐(𝑖) is the total cost, 𝑓(𝑖) is the amount of moves that the cube
has made since the initial state, and 𝑔(𝑖) is the total difference
between the current state and the finished state of the cube. 𝑔(𝑖)
is initialized by 0 and increments by 1 for each square whose
color does not match the color of the finished state’s square.

C. Graph

 Graph is a representation of discrete objects and their
connections[4]. There are two components of a graph, which are
displayed in this equation:

 𝐺 = (𝑉, 𝐸) (2)

With G being the graph, V being a nonempty set of nodes, and
E being a set of edges. A node is a discrete object that is
represented in the graph, and an edge is a connection (usually
drawn in a line) that connects a pair of nodes.

D. Tree

Tree is a fully-connected, directionless graph that has no
cycles[5]. Based on the definition, for a graph to be considered a
tree, the graph must fulfill three conditions:

• The graph does not have any cycle in it. This means
that, if an initial point is determined randomly from any
node, that point must not be able to travel to a visited
node without backtracking its path.

• There is no directional edge in the graph

• All nodes in the graph must be connected. In other
words, if an initial point is determined randomly from
any node, that point must be able to travel to all nodes
in the graph by going through the edges.

E. Rooted Tree

 Rooted tree is a tree in which a node is considered the root
and the edges are given direction away from the root[6]. Since a
rooted tree is a tree, the direction sign of the edges can be
omitted, but the direction of each edge is still clear, away from
the root. There are 10 terms used in rooted tree:

1. Child

A node is a child of another node if the former has
lower level than the latter and they are directly
connected by an edge. Using Figure 5 as an example,
nodes 1 and 2 are children of node 0; nodes 3 and 4 are
children of node 1.

2. Parent

A node is a parent of other nodes if the former has
higher level than the latter and they are connected by
an edge. Using Figure 5 as an example, node 0 is the

Figure 2. Illustration graph of BFS (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/BFS-DFS-2021-Bag1.pdf)

Figure 3. Examples of graphs that are also trees (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Pohon-2020-Bag1.pdf)

Figure 4. Examples of graphs that are not trees (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Pohon-2020-Bag1.pdf)

IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

parent of nodes 1 and 2; node 1 is the parent of nodes 3
and 4.

3. Path

A path from a node to another means the list of nodes
required to be traveled to in order to go from the former
to the latter. A length of a path is the number of the
nodes in the path. Using Figure 5 as an example, a path
from node 0 to node 3 is 0, 1, 3, with the length of the
path being 3.

4. Sibling

A node is a sibling of another node if both are different
children of the same parent. Using Figure 5 as an
example, node 1 is a sibling of node 2 and node 3 is a
sibling of node 4.

5. Subtree

A tree is a subtree of a node if the tree’s root is a child
of the node. Using Figure 5 as an example, a tree which
consists of nodes 1, 3, and 4 is a subtree of node 0.

6. Degree

A degree of a node is the amount of subtrees or children
of the node. Using Figure 5 as an example, the degree
of node 0 is 2, the degree of node 1 is 2, the degrees of
nodes 2, 3, and 4 are 0.

7. Leaf

A leaf of a tree is a node of the tree that has no children.
Using Figure 5 as an example, nodes 2, 3, and 4 are
leaves of the tree.

8. Internal nodes

An internal node is a non-root node of the tree that has
children. Using Figure 5 as an example, node 1 is an
internal node.

9. Level

The level of a node in a tree starts from 0 at the root,
then increments by 1 for each node traveled from the
root until a leaf is reached. Using Figure 5 as an

example, the level of node 0 is 0, the level of nodes 1
and 2 are 1, the level of nodes 3 and 4 are 2.

10. Height/Depth

The height or depth of a tree is the maximum level of a
leaf node. Using Figure 5 as an example, the height of
the tree is 2.

III. IMPLEMENTATION

This section discusses everything about the program. The
things explained here are cube layout, the implementation of the
algorithm, multiprocessing, and heuristic techniques
implemented.

The first thing discussed in this section is the cube layout.
The cube layout part of this section explains about how to see a
Rubik’s Cube for this paper’s context, how each square is
indexed to prevent confusion, and how the cube’s layout
translates to the program.

Figure 6. Flattened Rubik’s Cube sides

Figure 7. Flattened Rubik’s Cube’s squares, numbered

Figure 5. Rooted Tree

IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

Next, the section discusses about algorithm implementation.
The algorithm implementation part of this section explains about
all 18 moves a Rubik’s Cube can do, how they are implemented
into the program, the input and the output of the program, and
how the program works.

After algorithm implementation, the section discusses about
the implementation of multiprocessing into the program. The
multiprocessing part of this section explains about the benefits
of implementing multiprocessing into the program.

The last thing that the section discusses is the heuristic
techniques used in the program. This part of the section explains
how and where the heuristic technique is implemented into the
program.

A. Cube Layout

The Rubik’s cube layout is represented by that of a flattened
cube. The figures in this chapter show how the cube is perceived.
The flattened cube in Figure 6 shows each side of the cube and
what side it represents before it is flattened. Figure 7 shows the
layout of the squares on each side of the cube. Figure 8 shows
how the cube is implemented in the program. The cube is
implemented as a three-dimensional array with 6x3x3 size. The
first dimension represents the sides of the cube, numbered by 0
to 5 and arranged as following: Top, Front, Left, Back, Right,
and Bottom. The second dimension represents the rows of each
side of the cube, numbered by 0 to 2 and arranged from the top
(number 1-3 on Figure 7) to the bottom row (number 7-9 on
Figure 7). The third dimension represents the columns of each
row, numbered by 0 to 2 and arranged from the left (number 1,
4, and 7 on Figure 7) to the right column (number 3, 6, and 9 on
Figure 7). For example, using Figures 6 and 7 as a reference,
rubik[3][0][2] represents the square number 3 on the back side
of the cube.

Each side is represented by a color, and each color is
represented by a number, from 1 to 6. A solved cube is
represented by Figure 8.

B. Algorithm Implementation

The Rubik’s Cube has 18 types of rotations[2]:

• F: Rotate the front side of the cube clockwise

• R: Rotate the right side of the cube clockwise

• U: Rotate the top side of the cube clockwise

• B: Rotate the back side of the cube clockwise

• L: Rotate the left side of the cube clockwise

• D: Rotate the bottom side of the cube clockwise

• Fi: Rotate the front side of the cube counter-clockwise

• Ri: Rotate the right side of the cube counter-clockwise

• Ui: Rotate the top side of the cube counter-clockwise

• Bi: Rotate the back side of the cube counter-clockwise

• Li: Rotate the left side of the cube counter-clockwise

• Di: Rotate the bottom side of the cube counter-

clockwise

• F2: Rotate the front side of the cube (regardless of

clockwise motion) twice

• R2: Rotate the right side of the cube (regardless of

clockwise motion) twice

• U2: Rotate the top side of the cube (regardless of

clockwise motion) twice

• B2: Rotate the back side of the cube (regardless of

clockwise motion) twice

• L2: Rotate the left side of the cube (regardless of

clockwise motion) twice

• D2: Rotate the bottom side of the cube (regardless of

clockwise motion) twice

In the program, all 18 types of rotations are implemented.

The rotations F2 to D2 are implemented by doing the single

type of the rotations (F to D) twice, but are counted as one move

instead of two.

The program can accept an input and print an output. The

input of the program is a .txt file that consists of rotation

notations meant to scramble the cube, and the output is the

rotation notations needed to solve the cube and the execution

time of the solving process.

After scrambling the cube, the current state of the cube is

used as the first live node. The first live node is removed from

Figure 8. How Rubik’s Cube is translated into the program

Figure 9. Rooted Tree of the first iteration of the program

Figure 10. Input of the program

IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

the live node list and used as the current node, and 18 child

nodes (based on the 18 different types of rotations) are

generated and inserted into the live node list. The list of live

nodes is then arranged.

The program uses Branch & Bound algorithm to solve the

cube. The algorithm is implemented on the live node list

arrangement function. The function uses Merge Sort algorithm

to arrange the live nodes and they are arranged based on the

number of the sum of f(i) (the amount of rotations that the cube

has done on that node) and g(i) (the difference between the

current state and the solved state) of each node in ascending

order.

The first element of the live node list after being arranged is

picked as the next current node. Then, the same process as the

previous current node is repeated until the g(i) of the current

node is 0. The loop is then terminated, with the current node

considered as the solution.

C. Multiprocessing

The program to solve Rubik’s cube is created using Python
programming language, which means it only uses one CPU core
by default. To speed up the solving process, multiprocessing is
implemented into the program. Multiprocessing allows the CPU
to use all cores, instead of just one, to process a part of a
program. Using multiprocessing on a compute-heavy process
will reduce execution time significantly.

Multiprocessing changes the algorithm of the program a little
bit. The first 18 child node generation is done using single core
processing. After the 18 child nodes are in the live node list,
multiprocessing is implemented, by computing all 18 child
nodes at once. Each child node will have its own live node list
and it will be arranged separately. This not only speeds up the
solving process in general, but also divides the amount of live
nodes in each list by 18. This will make arranging live node lists,
one of the most compute-heavy parts of the program, a lot faster,
allowing for storing significantly more nodes compared to single
core processing.

Multiprocessing is implemented using Multiprocessing
library, with functions Pool to create multiple processes and
Starmap to map the solving function to different processes.
Multiprocessing Queue is used to communicate between
different processes. Once a process finds a solution, it will put
an integer into the empty queue. All processes will stop if one
manages to find the solution first, indicated by the queue not
being empty.

D. Heuristic Techniques

To reduce the amount of states that the program must check,
a heuristic is placed. The heuristic technique used is as follows:
Depending on the last rotation of the current node, certain nodes
are exempt from being generated, because the cube states of the
nodes have been covered by other existing nodes. Here are some
examples of the heuristic:

• If the last rotation of a node is F, a child node with F
rotation is not generated. This is because the rotation
makes the child node’s cube state equivalent to a sibling
of the parent node’s with F2 as its last rotation, and is
therefore redundant.

• If the last rotation of a node is F, a child node with Fi
rotation is not generated. This is because the rotation
makes the child node’s cube state equivalent to the parent
of the parent node’s, and is therefore redundant.

• If the last rotation of a node is F, a child node with F2
rotation is not generated. This is because the rotation
makes the child node’s cube state equivalent to a sibling
of the parent node’s with Fi as its last rotation, and is
therefore redundant.

IV. TESTING

This section discusses about the testing part of the paper. It
consists of limitations put in place to reduce the amount of
computing power the computer needs, the test cases and
conditions, and the test results.

A. Limitations

Rubik’s Cube has approximately

43,252,003,274,489,856,000 (43 quintillion) possible states[1].

Even with heuristics and multiprocessing, solving a randomly

scrambled Rubik’s cube using Branch & Bound on a computer

will require a lot of RAM. Therefore, a limitation is set, in that

the input test cases used in this test will only contain a

maximum of 5 rotations as scramble notations for the cube. This

limitation is set to reduce the amount of RAM that the computer

requires to solve the puzzle.

B. Testing Conditions

The Rubik’s cube program is tested against the exact same
program, but with Breadth First Search (BFS) as its solving
algorithm instead of Branch & Bound. There are three test cases
used, each with 5 rotations as scramble notations. Here are the
test cases:

• Test Case 1: B Fi L Ri D2

• Test Case 2: F L2 F Di R

• Test Case 3: Li Di B Ri Fi

 There are two variables that are tested in this test, and both
are measurements of the algorithm’s performance on solving
Rubik’s cube puzzle. The first variable is the execution time.
The less time the program requires to solve the cube, the more
performant the program is at its job. The execution time is
counted from right before the start of the solving function to
right after the end of it. The execution time is measured by Time
The second variable is the RAM usage. The less RAM the
program uses, the more efficient the program is at its job. The
RAM usage number is collected from Task Manager’s display
of the Python task.

 The computer used for testing of the programs has these
specifications:

Figure 11. Output of the program

IF2211 Algorithm Strategies Paper, 2nd Semester Year 2021/2022

• CPU: AMD Ryzen 7 5700U

• RAM: 7.4GB DDR4 (around 5.8-5.9GB free)

C. Test Results

TABLE I. TEST RESULTS OF BRANCH & BOUND AND BFS ACROSS

THREE DIFFERENT TEST CASES

The table shows a clear and huge win for the solving
program with Branch & Bound algorithm compared to BFS. For
the first test case, the Branch & Bound algorithm manages to
find the solution 58.26 times faster while consuming 37.57 times
less RAM. Test case 2 is where things get interesting, as BFS
algorithm fails to find the solution due to the computer not
having enough RAM, while Branch & Bound algorithm
manages to find the solution just fine with quick execution time
and nowhere near full RAM usage. Test case 3 tells us that
Branch & Bound algorithm manages to find the solution 204.45
times faster while consuming 28.7 times less RAM compared to
BFS algorithm.

V. CONCLUSION

Branch & Bound algorithm is proven to be superior
compared to BFS. This is due to the nature of Branch & Bound
being an informed search algorithm. However, neither algorithm
is effective enough to be able to completely solve a fully
randomized Rubik’s Cube without a ridiculous execution time
and an unrealistic amount of RAM usage. Considering both
Branch & Bound and BFS are more general algorithms
(algorithms that work with a lot of different problem solving
cases), a more specific Rubik’s Cube solving algorithm is
required to make this task possible.

VIDEO LINK AT YOUTUBE

https://youtu.be/7H0vdNhp61E

GITHUB REPOSITORY

https://github.com/13518014Ignatius/IF2211_Paper

ACKNOWLEDGMENT (Heading 5)

In this section, I would like to express my eternal gratitude
towards God for allowing everything in my life to happen. I
would also say my thanks to my family and friends for
supporting me all the way up to the point that I manage to finish
this paper. Special thanks also goes to Bandung Institute of
Technology, STEI faculty, Informatics Engineering department,
and Dr. Nur Ulfa Maulidevi, S.T, M.Sc. as my lecturer for the
Algorithm Strategies course, for allowing this course to exist and
helping me in learning about various algorithms necessary to
finish this paper. Finally, I would like to apologize for any
mistake in this paper.

REFERENCES

[1] Zeng et al., Overview of Rubik’s Cube and Reflections on Its Application
in Mechanism (2018), https://doi.org/10.1186/s10033-018-0269-7,
accessed on May 6th, 2022.

[2] Ferenc, D., Rubik’s Cube Notations, https://ruwix.com/the-rubiks-
cube/notation/, accessed on May 4th, 2022.

[3] Munir, R., “Breadth/Depth First Search” (2021),
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-
DFS-2021-Bag1.pdf, Accessed on May 12th, 2022

[4] Munir, R., Maulidevi, N.U., Khodra, M.L., “Algoritma Branch & Bound
(Bag.1)” (2021),
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Branch & Bound-2021-Bagian1.pdf, Accessed on May
12th, 2022.

[5] Munir, R., “Graf (Bag.1)” (2021),
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-
2020-Bagian1.pdf, Accessed on May 11th, 2022.

[6] Munir, R., “Pohon (Bag.1)” (2021),
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/Pohon-2020-Bag1.pdf, Accessed on May 11th, 2022.

[7] Munir, R., “Pohon (Bag.2)” (2021),
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/Pohon-2020-Bag1.pdf, Accessed on May 6th, 2022.

STATEMENT

I hereby declare that this paper is of my own writing, not an

adaptation or a translation of someone else’s paper, and not

plagiarized.

Bandung, 22 Mei 2022

Ignatius David Partogi, 13518014

No Algorithm + Test Case
Execution

Time (s)

RAM Usage

(MB)

1 BFS + TC 1 50.1 5,185

2 Branch & Bound + TC 1 0.86 138

3 BFS + TC 2
FAIL (RAM

full)
5,916

4 Branch & Bound + TC 2 0.85 168

5 BFS + TC 3 22.49 2,927

6 Branch & Bound + TC 3 0.11 102

https://doi.org/10.1186/s10033-018-0269-7
https://ruwix.com/the-rubiks-cube/notation/
https://ruwix.com/the-rubiks-cube/notation/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf

